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We report on analytical and Monte Carlo studies of d-dimensional nonequilibrium stochastic
lattice systems whose dynamical rule incorporates various symmetries. We find that critical behavior
is of the Ising variety, and that the cluster distribution has scaling properties proposed earlier for
the equilibrium system, and give estimates for the exponents that characterize clusters for d = 2.
The scaling region is notably larger than the corresponding one for the equilibrium case; ramified
percolating clusters do not occur below the critical point.

PACS number(s): 05.50.+q, 05.70.Jk, 75.40.Mg

I. INTRODUCTION

The understanding of nonequilibrium ordering phe-
nomena [1] often involves an extension of the phase tran-
sition concept to systems that are open to the environ-
ment. The theory supporting this extension is scarce,
however, so that investigating simple stochastic lattice
systems is sensible. The models of interest have been
termed from various perspectives as nonequilibrium Ising
models, stochastic spin systems, time Markov processes,
probabilistic cellular automata, and interacting particle
systems. They are characterized by a dynamical rule that
is designed ad hoc to produce certain emergent proper-
ties, or to simulate the action of external agents, etc.
A main question concerns universality, and the depen-
dence of nonequilibrium critical behavior on the details
of the dynamical rule [2,3]. Therefore, determining the
range of validity of the finding that the ordinary Ising
fixed point is locally stable under small amounts of ir-
reversibility under certain conditions [4] is intriguing. A
few nonequilibrium systems have been reported to agree
with this expectation [5-8]. Other cases [2,3,9,10] are
more difficult to classify from this point of view, how-
ever. This may reveal the existence of other stable fixed
points having their own domain of attraction, which is
not excluded by the perturbative argument in Ref. [4];
such a possibility has been worked out for d > 1 for a
certain dynamical rule [11].

We report some exact and numerical results on the
nonequilibrium ordering in a class of systems whose dy-
namical rule includes several different symmetries. Be-
sides critical properties, we have analyzed the cluster dis-
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tribution in relation to some expectations [12-14]. No ev-
idence is found within the class of systems investigated of
any departure from the ordinary Ising critical behavior.
But we find what, in a sense, is a surprise: as compared
to the equilibrium case, the asymptotic region for scaling
extends to a wider range of parameter values for nonequi-
librium systems. Furthermore, we address a controversy
about the properties of clusters of aligned spins (a de-
scription of previous studies of the equilibrium cluster
distribution is beyond the scope here: for details we refer
to Sec. I of Ref. [15], and to Refs. [16-19], for instance).

II. DEFINITION OF THE MODEL

Consider a regular lattice, e.g., the d-dimensional sim-
ple cubic lattice Z¢, with two-state (spin) variables,
sy = +1, r € Z¢. The dynamical rule that induces time
changes of the configuration s = {s.} consists of single
spin-flip processes, i.e., sy — —s,. They characterize a
time Markov process that is defined by the master equa-
tion

?_'F_,é(_ts_;ﬂ = szr [c(s + s¥) P (s¥;t) — c (s s) P (s;2))]
(1)

for the probability P (s;t) of s at time t. Here s* denotes
s after the indicated flip at r, and the probability (per
unit time) for this transition is

c(s"—s) =1+a_ grsgn[se (1 + )]

k
+b)  qrsgn® [se (e + )] - (2)
k
Here
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Syl (3)
{r'slr—r'|=1}

DN | =

where the sum is over the nearest-neighbor (NN) sites of
r’

0 for X =0,
sgn(X)=<¢ +1 for X >0, (4)
-1 for X <0,
and a, b, J, A\x and g, with £k = 1,2,..., are system
parameters.

A main motivation for (2) is as follows. Consider the
simpler rule

c (s« s) = 1+ asgn (s;n) + bsgn® (8,7 . (5)

This generalizes several cases in the literature. That is,
a=5b= —% corresponds to the zero-temperature limit
of the algorithm by Metropolis et al. [20], and a = —1,
b = 0 reduces (5) to the zero-temperature limit of the
case introduced by Kawasaki [21]; cf. Table I. Both
satisfy detailed balance, namely, c (s « sT) exp[—H (s*) /
kBT] = c(s"« s)exp[—H (s)/kT] with H (s)
= —J X feetijr—r|=1} Sr5r/ (where the sum is over all
pairs of NN sites in Z?). Consequently, the two cases
imply a tendency of P (s;t) as t — oo toward the canon-
ical equilibrium state for T — 0 and energy H(s). The
detailed balance property does not hold in general, so
that no canonical steady state is reached asymptotically;
e.g., for majority vote processes that are characterized
by either a = b = (2p — 1) /2(1 — p) with p # 0,1 [22],
a=p—3andb=—1[7,ora=2p—1 (p#0,1) and
b = 0 [23,24]; cf. Table I. One may interpret (2) as a
natural generalization of (5) in the sense that the former
ensues from the latter family after considering the action
of fields hy, (= 2J ), and averaging with distribution

g =D @ (A=), (6)
k

where § is Dirac’s delta function. Therefore, (2) is a
superposition of different (competing) dynamical rules,

TABLE I. Rates c(s"+s) of the form (5) that char-
acterize several stochastic lattice systems, namely, the
zero-temperature limit of two familiar cases, and three ma-
jority vote processes, as defined in the references indicated.
The present work concerns systems whose dynamical rule is
a combination of this sort of rates, as defined in (2).

Rate for indicated value of s.7,

>0 =0 <0 Ref.
0 1 1 [20]
0 1 2 [21]
p(1-p)~ ! 1 1 [22]
P 1 1-p (7]
2p 1 2(1-p) [23,24]
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which is characterized by the parameters h; and gy.
Thus any case of (2) will, in general, drive the system
to nonequilibrium steady states (i.e., steady states that
cannot be described by any simple Hamiltonian) even if
the corresponding (5) is canonical. In fact, the state at r
is then not only influenced by its neighbors but also by
the external agent, which is represented by the random
variable A = h/2J of distribution g(\) that cannot be
included in the Hamiltonian (except for a few cases that
we consider in Sec. III).

One may think of (2) as the dynamical rule correspond-
ing to a magnet that is under an external field; the value
of the latter varies with time sufficiently fast and com-
pletely at random within the set {hs} of possible values.
We deal below with the zero-temperature limit of this for
d > 1; the behavior with temperature and g for d = 1
has been reported elsewhere [25]. The present study may
thus be of some relevance to the understanding of cluster
properties in magnetic systems with random fields [26],
and one may imagine other situations, e.g., in the social
sciences that are represented by (2). Nevertheless, our
interest is rather associated to the fact that (2) is gen-
eral enough to exhibit several symmetries for different
values of the parameters \x, qx, a, and b.

III. SOME ANALYTICAL RESULTS

Let us consider explicitly the distribution

g =250-2)+ L0+ X +1-05N). ()

That is (using the magnetic language), the applied field
does not induce net magnetization but takes one of the
values +)g or 0 at random with the indicated probabil-
ities. In order to obtain explicit analytical results, we
consider first a few extraordinary cases [23] for which the
asymptotic solution of (1) is

Py (s) x e FG) = exp [Ke Z Sy Syt
{r,r';|r—r'|=1}

r

Fhe Y s,] (8)

and the symmetry c(s « s™)exp[—FE (s7)]
= c(s"« s)exp[—FE (s)] holds. This is far from trivial,
e.g., an effective temperature cannot exist in general for
K. # 0 and p. # 0. However, one would expect full
nonequilibrium behavior only for cases lacking this sort
of quasicanonical solution. In any case, the consideration
of steady states that have this symmetry is also interest-
ing [2].
The rate (2) reduces for (7) and d =1 to
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1+asr77r+b [‘I+(1“‘I)713]

c(s*+s) =

1+asene (1—q) +b [g+ (1 —q)n?]

This has the structure
c(s* 8) = g + a18:7 + Q7 + 3n?. (10)

One finds then after some algebra that (1) has the simple
solution E (s) = K. E{r,r';|r—-r’|=1} SpSypr, L€, e = 0 in
(8) if and only if o = 0. The case az = 0 in (10) hap-
pens to correspond in (9) to either b = 0 (the situation
considered in [21,23,24]) for which we obtain

—a for 0 <X <1,
tanh (2K.) =< —a(1—2) for Ao =1, (11)
—a(l—gq) for X >1,

or else b # 0 with Ag # 1 (the case in [7,20,22]) for which
we obtain

_lib for 0 <A <1,
tanh (2K.) = ( ) (12)
a(l—gq
———:1-+T for Ao >1.

This result suggests that one investigate further (for d =
1) the case b # 0 with A = 1, which might correspond
to the more complex behavior.

A similar study for d > 1 indicates that no solution
with the symmetry (8) exists in general but for a few
very special cases whose physical interest is quite limited
within the present context. That is, (8) holds for d = 2
for any of the canonical versions of (5) with (7) such that
either (i) ¢ = 0 so that no dynamical competition occurs,
and one obtains K. = oo (this is the trivial case that
corresponds to the rates by Kawasaki or Metropolis, for
instance, for T — 0), or (ii) Ao > 2 and ¢ = 3, which
describes an even competition of +2J)¢ fields, and one
obtains that K. = 0 (this corresponds for d = 1 to the
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for 0 < Ap <1,

1+ asene (1‘ g‘) +b [q_ §Wr+(1—11)7)f] for Ao =1, (9)

for Ao > 1.

—

limit T — 0 of a situation studied in detail earlier [25]).
Furthermore, one also finds for d = 2 and (iii) a = —1
and b = 0 with Ao = 2 and ¢ = 2 — /2 that an effective
temperature of K. ~ 0.22 exists.

Some additional information of interest may be ob-
tained from a necessary property of the rates [22]. That
is, the condition

1 r
A=y zr:c(s(-—s)—%:h)g[ >0, (13)

where pg = — >, [[I,cq sr] c(s"« s) with Q any set of
spins, guarantee stability of the system. A comparison
of this with mean-field solutions in a different problem
has revealed that (13 ) sometimes provides a relatively
accurate method to bound the relevant region in which
the system may exhibit a phase transition [27].

Some consequences of (13) are illustrated in Table II.
In agreement with the results above, the one-dimensional
system is predicted to evolve with time toward states
with only one phase for any ¢ (> 0) and Ao. This applies
also to the case A9 = 1, which we have shown above lacks
the symmetry (8). For d > 1, (13) reveals that regions
of the phase diagram exist for A\g > d in which A < 0 so
that the system might undergo a phase transition.

We remark also that the rate (9) reduces for Ao > d to

c(s"+—s) =14+a(l—q)sgn(s:n)
+b[q+ (1 —q)sgn’ ;] . (14)

This is similar to a rate used before [28] to represent a
local competition of temperature T' = oo with probability
q and temperature T = 0 with probability 1 — ¢q. As
this case is relatively well understood, our analysis in
this section creates special interest in studying the case
Ao = d > 1, for which no information is available yet.
That is, one might expect the latter to exhibit interesting,
full nonequilibrium behavior.

TABLE II. The values for ¢ that produce a change of sign of A for different cases, as indicated
(see the main text in Sec. IV for a definition of the two dynamical rules mentioned here). A phase
transition may only occur for g smaller than the value shown for each case. If no value is reported
here stability is guaranteed for any ¢ if d = 1, while one has A < 0 if d > 1.

K rule M rule
Ao <d /\0=d Ao > d /\o<d Xo=d A0>d
d=1
d=2 0.50 0.50 0.56 0.64+0.02
d=3 0.69+0.02 0.71+0.02 0.7940.01 0.81+0.02
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IV. NUMERICAL RESULTS

Consequently with the above, we have analyzed in de-
tail Ao = d = 2 by the Monte Carlo (MC) method. In
particular, we have considered the cases a = b = —%
(denoted hereafter as M rule) and a = —1 and b = 0
(denoted hereafter as K rule). Results refer to L x L lat-
tices with L = 128 for the K rule, and L = 16,32,64,128
for the M rule. No systematic finite-size scaling analysis
was performed for the former rule given the similarity
of results obtained for the two cases for L = 128; that
is, we believe that the qualitative results reported here
apply to both M and K rules. The stationary regime
involves between 2 x 10° and 108 MC steps (per site)
with data collected every 200 MC steps. We have moni-
tored the long-ranged order parameter or magnetization,
m = N71(3 s.), where (---) represents the average
over configurations, the short-ranged order parameter or
energy, that we define e = %N“l <E{r,r,;|,_,,|=1} s,s,.,> ,
its fluctuations, and C = Je/dq.

A main conclusion is that, independently of the dy-
namical rule, the system exhibits a second-order phase
transition with a critical point of the (2 — d) Ising vari-
ety at gc. This is illustrated in Figs. 1 and 2. The values
for gc that have been obtained by extrapolating a lin-
ear fit m® vs g are 0.146 + 0.002 (which is confirmed in
Fig. 2 by finite-size scaling analysis) for the M rule, and

PR RET RN B

0 -€ 0.8

FIG. 1. (a) Data for the (dimensionless) order parameter
m for the M rule (O) and for the K rule (o), as defined in
the main text, as a function of € = (¢ — gc) ¢5" for 128x128
lattices, and for the equilibrium case (A) for 64 x 64 lattices
with € = (T — Tc)T5'; the solid line is the Onsager exact
solution. (b) The same data and exact solution plotted m*/?
vs € for B = 1/8, the Onsager value. Linear fits to the data
near € = 0 are also indicated.
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FIG. 2. Finite-size scaling of data for the M rule with
B =1/8, v = 1, and gc = 0.146 for L x L lattices with
L =32 (o), 64 (O), and 128 (o). The inset is a plot of gc (L)
defined as the location of the maximum in the temperature
derivative of the specific heat C = de/8q. The dashed curve
corresponds to the best fit given in Eq. (17).

0.215 £ 0.005 for the K rule. An interesting observation
that is made evident in the figures is that the asymptotic
critical region is wider than for the Ising model. That
is, m ~ €/8, with € = (¢ — gqc) gg", holds here for fi-
nite lattices more generally, namely, from zero up to a
value of |¢|, which is around 0.8 for the M rule and 0.5
for the K rule while this is around 0.1 for the Onsager
case [with € = (T — T¢) T " instead] for the system sizes
considered; this is illustrated in Fig. 1(b). It may be
an indication of the respective range of validity near the
critical point of homogeneity of the correlation function.
It would be interesting to have a detailed explanation
of the fact that one needs to approach the critical point
much more closely in equilibrium than in nonequilibrium
in order to enter the Ising regime. Therefore we have in-
vestigated also some of the cluster properties below crit-
icality trying to obtain information about crossover phe-
nomena. In addition, it may help to determine more pre-
cisely the relation between the above systems, e.g., one
would like to figure out in this way any possible topolog-
ical differences between equilibrium and nonequilibrium
configurations. Furthermore, our data are good enough
to analyze previous proposals with confidence [15-19].
Consider the cluster size distribution, p (£), and mean
surface energy, s(£). Here £ represents the number of
spins aligned in a given direction that have at least an-
other NN aligned spin, and s is the number of NN broken
bonds associated with the boundary of the cluster aver-
aged for each value of £. (In addition, our data for p and s
involve the steady-state average indicated above.) With
proper normalization (one needs to assume also that no
anomalous, e.g., percolating, clusters occur), one has that
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m(e)=1—-2Y g, ¢p(£),and e(e) =232, s(O)p(£),
which one expects to behave as m (e) ~ €, and e (€) ~
eo (€) + €17 €, where e is the regular part, sufficiently
near gc. Then one may interpret the latter as a conse-
quence of the following asymptotic behavior:

p(£) = L£77p (el?), s(£) = £75 (et¥)

for sufficiently large £ and small e. Here, 7, y, and o
are the exponents that characterize the cluster distribu-
tion, and the argument requires that o =1 — y (¢ — 1),
a+B+¢ =2,and B = (7 —2)y~!. Cambier and Nauen-
berg [15] have studied these scaling forms for the Ising
model in two (and three) dimensions by MC simulations
below the critical temperature. They report a narrow
asymptotic region in which these properties seem to hold
and, consequently, observe deviations from scaling and
temperature dependence of exponents. Figures 3-5 de-
scribe a situation in which (15) is confirmed more defi-
nitely and generally for the same definition of clusters.
This seems related to the fact that our data statistics are
good, and also to a peculiarity of the systems (1) and (2),
e.g., no percolating clusters have hampered our analysis
slightly below g¢ (unlike in the Ising case); of course, an
infinite cluster develops at q¢.

The cluster distribution has been studied in two dimen-
sions for the equilibrium case, and for the nonequilibrium
case denoted above as M rule. Figure 3 illustrates s (£)
for the two systems. This gives 0 ~ 0.68. The graphs
in Fig. 3 reveal again that the nonequilibrium data are
better described by theory than the equilibrium data (in
spite of the fact that both refer to comparable simula-
tions with similar statistics). In particular, no percolat-
ing clusters have been observed during the nonequilib-
rium steady state up to ¢ = g¢ (while the behavior ob-
served for the nonequilibrium case is quite similar to the
equilibrium data, at and above the corresponding critical
value, gc and T¢, respectively). The same ensues from
the study of the cluster size distribution in Fig. 4. The
associated fitting parameter follows as 7 ~ 2.05 for the

(15)

6.5 7
In(S) L In(S)
2.5 3
3.5 In(L) 6.0

FIG. 3. Log-log plot of S (f) defined as the total surface
of all the clusters of size £ for 20 < ¢ < 300. The upper
set corresponds to the M rule for —e = 0.013 (o), 0.027(0O),
0.041(A), 0.062(x), 0.075(x), and 0.144(¢). The lower
set corresponds to the equilibrium case for —e = 0.009 (o),
0.022(0), 0.030(A), 0.039 (%), and 0.052 (x). The best fit
here gives o = 0.68.
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FIG. 4. Log-log plot of P (£), i.e., total number of clus-
ters of size £. The lower set corresponds to the M rule
for —e = 0.013 (o), 0.027(0), 0.041(A), 0.062 (%), and
0.075 (x). The upper set corresponds to the equilibrium case
for —€ = 0.004 (o), 0.009 (CJ),0.030 (+), and 0.052 (¢). The
best fit here gives 7 = 2.05.

nonequilibrium system. We have obtained roughly the
same value for equilibrium but it is remarkable that, as
reported before, only data within the temperature range
2.15 < T < 2.25 have to be considered to avoid the count-
ing then of too large clusters that do not follow the same
behavior as the rest.

A stringent test may be obtained from the study of the
moment Y ,£7p(£). For example, one may try to scale
the data according to the function

F (en¥) = €'/¥ Z £7p (45 €) (16)
=1

with proper values for the exponents y and 7. Figure 5
illustrates the result. The best values we have obtained
for the parameters in this way are 7 = 2.054 &+ 0.005 and
y = 0.44 + 0.01. These values describe both equilibrium
and nonequilibrium data.

Finally, we mention that the size dependence of g¢

0.01 T T T
1

i 5&499%95568&“ B
e®®

o
Qﬂﬂ“qaég 1 1 0

0 en’ -0.75

FIG. 5. Scaling plot of the (dimensionless) function F (z)
in (16) for both equilibrium (lower curve) and nonequilib-
rium (upper curve) clusters for —e = 0.052 (o), 0.048 (O),
0.039 (A), 0.030(x), 0.026(e), 0.021(c), 0.017(x), and
0.012(+), and —e = 0.144(c), 0.110(0), 0.075(A),
0.062 (x), 0.041 (s), 0.027 (c), 0.014 (x), and 0.007 (+), re-
spectively.
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conforms to

gc (L)
gc (o0)

and we have obtained A = 0.142(5), B = 184.5(1),
w = 1.367(7), and g¢ (o0) = 0.146 (0) . (A simpler effec-
tive fit is gc = 0.14607 + 1.6924L72.) This reflects the
importance for the nonequilibrium system of the second-
order contribution beyond the expected term ~ L~%,
v = 1; cf. Ref. [29].

—1=AL™*(14+BL™), (17)

V. DISCUSSION

We have studied the class of d-dimensional Ising-like
systems defined by (1)-(4) which, in general, exhibit
nonequilibrium steady states. A well-defined relation ex-
ists between these systems and some familiar ones in the
literature; furthermore, an experimental realization has
been suggested for some of them. We have identified
a subclass of these systems having the quasicanonical
solution (8) in terms of an effective Hamiltonian. For
d = 1, the systems in this subclass correspond to (10)
with as = 0, and the steady state is particularly sim-
ple, namely, it is characterized by zero effective field, i.e.,
e = 0, and by an effective temperature given by (11)

r (12). Otherwise, the situation is expected to be more
complex; then one may use (13), for example, to guess
about details of the phase diagram.

The analytical study of (1)—(4) has stimulated us to
study numerically two particular two-dimensional cases,
both corresponding to A\g = d = 2 in (7), that are good
candidates for complex properties. In spite of their cor-
respondence to a full nonequilibrium situation, the MC
experiments performed depict a situation that is per-
haps simpler than expected (but interesting and a bit
surprising). That is, two different dynamical rules lead
to different steady states [e.g., phase transitions occur for
g = gc = 0.146 (0) and 0.21 (5), respectively] that have
the same critical properties. The latter seem to be pre-
cisely of the Onsager type that characterizes the equilib-
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rium case (for d = 2). However, the data suggest that the
region of influence of the 2—d Ising critical point is larger
for the nonequilibrium systems (and larger for one of the
nonequilibrium cases—denoted above as M rule— than
for the other). This is puzzling; it reflects some essential
difference in the nature of correlations between the two
cases. In particular, it seems that the divergence of the
correlation length occurs much closer to the critical point
for the nonequilibrium system than in equilibrium. This
also produces a peculiar size dependence of the critical
parameter, gc (L) .

The detailed study of the cluster distribution confirms
the above. In addition, we have obtained clear evi-
dence (for both equilibrium and nonequilibrium cases)
for the scaling proposal (15) and (16), and give accu-
rate estimates of the parameters involved for d = 2
that turn out to be model independent. In particu-
lar, we find o0 = 0.68 + 0.04, 7 = 2.054 + 0.005, and
y = 0.44 £+ 0.01 (to be compared with the estimates in
Ref. [15] of 7 = 2.05 + 0.03 and y = 0.40 £ 0.02 for the
equilibrium case). The value of 3 that follows then from
the scaling law 8 = (7 — 2) y~1 is close to the equilibrium
value of %. As indicated in Fig. 5, the scaling function
in (16) varies essentially from equilibrium to nonequi-
librium conditions. Finally, also remarkable is the fact
that the nonequilibrium system (unlike the equilibrium
counterpart) does not exhibit the large and very rami-
fied, say, percolating clusters (of aligned spins) just below
criticality that have previously systematically hampered
accurate confirmation of scaling hypothesis (which has
motivated introducing alternate definitions of a cluster
in previous studies of lattice systems).
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